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Abstract

A non-Markovian model of quantum repeated interactions between a small
quantum system and an infinite chain of quantum systems is presented. By
adapting and applying usual projection operator techniques in this context,
discrete versions of the integro-differential and time-convolutionless master
equations for the reduced system are derived. Next, an intuitive and rigorous
description of the indirect quantum measurement principle is developed and
a discrete non-Markovian stochastic master equation for the open system is
obtained. Finally, the question of unravelling in a particular model of non-
Markovian quantum interactions is discussed.

PACS numbers: 03.65.−w, 03.65.Yz

1. Introduction

The theory of open quantum systems describes the physical phenomena of dissipation and
decoherence [12, 14, 16, 39, 40]. Starting from the microscopic formulation of the interaction
between a small system and an environment in terms of the Schrödinger equation, there
exist different ways to derive the master equation for the irreversible evolution of the small,
i.e., reduced system. Typically, two approaches are considered: the Markovian and the
non-Markovian one (see chapters 3, 9 and 10 in [14]). A very active line of research is
focused on developing an appropriate description of indirect quantum measurements within
both approaches. This research is motivated by recent experiments in quantum optics and
quantum information [14, 26].

Physically, the Markovian approach is understood as a model without memory effects
of the environment. In this setting, the master equation takes the form of a Lindblad–
Gorini–Kossakowski–Sudarshan equation [27, 30], where the generator of the dynamics
is a completely dissipative map [1, 14, 16, 27, 28, 30]. This equation is an ordinary
differential equation, which describes the evolution of the state of the small system and
the study of different physical phenomena: irreversibility, decoherence, return to equilibrium.
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Mathematically, the approach makes use of the Born–Markov approximation or the weak
coupling limit. Starting from the Hamiltonian description of the Schrödinger equation, tracing
over the degrees of freedom of the environment and neglecting the memory of the interaction,
the Markovian master equation is obtained.

In the Markovian context, measurement involves a stochastic perturbation of the Lindblad
equation in terms of stochastic differential equations, i.e., stochastic Schrödinger equations
[5, 7]. These equations have some remarkable properties. First, they conserve the purity
of states, i.e. unravelling (the term ‘stochastic Schrödinger equation’ is mainly used when
the equation preserved purity, otherwise it is called ‘stochastic master equation’). Second,
the expectation of the stochastic Schrödinger equation reproduces the dynamics induced
by the Markovian master equation for the density matrix of the open system. These properties
are very useful for the numerical simulation of the master equation. In fact, the so-called Monte
Carlo wavefunction method is used extensively in quantum optics and quantum information
[13, 15, 32].

In the non-Markovian approach, memory effects of the environment give rise to
generalized master equations, i.e., integro-differential equations for the density operator of the
open system. Usually, these equations are obtained by projection operator techniques, e.g.
the Nakajima–Zwanzig operator technique [41] or the time convolutioness operator technique
(see chapter 9 in [14]). These techniques allow for the formal description of more realistic
models. However, the generalized master equations are difficult to manipulate [14, 37]. Even
if formally exact analytical solutions can be obtained, these are very hard to solve numerically.
In the non-Markovian context, the stochastic equations describing measurement procedures
are usually expressed in terms of colored noise [19, 20] (the Markovian case involves only
white noise). The justification of such models is far from being obvious and intuitive. Often,
rigorous arguments are missing. Moreover, the question of non-Markovian unravelling is still
highly debated [17–24, 38]. Especially, the interpretation of non-Markovian unravellings in
terms of indirect measurement still remains an open problem.

In the Markovian case, a rigorous approach to the description of interaction and
measurement lies in the theory of quantum stochastic calculus [33]. In this setup, the
action of the environment (described by a Fock space) is modeled by quantum noises and
the evolution is given by the solution of quantum stochastic differential equations [2, 25].
Quantum filtering theory [8, 9] is based on quantum stochastic calculus in order to describe
quantum measurement and to derive stochastic Schrödinger equations. Recently, a discrete
model called quantum repeated interactions has been introduced [3, 4]. This model provides
a ‘useful’ approximation of the interaction between a small system and an environment. The
model is a small system H0 in contact with an infinite chain of quantum systems representing
the environment. All the elements of the chain are identical and independent. Pieces of the
environment, denoted by H, interact one after the other with H0 during a time τ . Hence, by
renormalizing the interaction in terms of τ , quantum stochastic differential equation models
can be obtained as continuous limits (τ goes to zero) of quantum repeated interactions
models. This approach has been adapted to the context of measurement in [34–36]. It
corresponds to the model of quantum repeated measurements. It has been shown that stochastic
Schrödinger equations can be obtained as continuous limits of the discrete version of quantum
measurement. Furthermore, via concrete procedures, the approach gives an intuitive and
rigorous interpretation of quantum stochastic differential equations and stochastic Schrödinger
equations.

The main aim of this paper is to present the non-Markovian model of quantum repeated
interactions and discrete measurement. We define a clear mathematical model of the effect of
the memory of the environment in this setup. Furthermore, we show that the natural projection
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operator technique (Nakajima–Zwanzig, time convolutioness) used in the continuous non-
Markovian approach can be adapted to the discrete context. We present a clear way to perform
quantum repeated measurement in the non-Markovian case. As a result we obtain a rigorous
discrete expression for the evolution of the small system with and without measurement.
Finally, we investigate the problem of unravelling in this context. For a concrete model, we
show that in the non-Markovian case unravelling imposes a Markovian structure except for
some very special cases.

The paper is structured as follows. In section 2, we present the mathematical model of
quantum repeated interactions in the non-Markovian case. We adapt the presentation of [3] to
introduce memory effect of the infinite chain.

In section 3, we obtain the description of the evolution of the small system by computing
the Nakajima–Zwanzig and time convolutioness projection operator technique. Especially,
we obtain a discrete version of the evolution described in the previous investigations for
the continuous case (see chapters 9 and 10 in [14] for all details concerning the continuous
version).

Section 4 is devoted to the introduction of a model of measurement. We present a
natural way to perform measurements in the context of non-Markovian quantum repeated
interactions. We define a probabilistic setup describing the random evolution of the small
system. By adapting the Nakajima–Zwanzig projection operator technique, we obtain a
rigorous expression of an evolution equation which is a discrete version of the non-Markovian
stochastic master equation. Next, we investigate the question of unravelling by studying
a special case of non-Markovian quantum repeated interactions. We show that unravelling
imposes strong assumptions for the evolution which in general lead to a Markovian dynamics.

2. Quantum repeated interaction model

This section is devoted to the description of the discrete model of quantum repeated interactions
in the non-Markovian setup. We start by reviewing briefly the Markov treatment of quantum
repeated interactions [3]. The canonical model is described as follows. A small system H0 is
in contact with an infinite chain of identical and independent quantum systems (each element
of the chain is denoted by H). Each copy of H interacts with H0 in the following fashion.
The first copy of H interacts with the small system during a time τ and disappears afterward.
Then, the second copy interacts with H0 during the same time interval τ and so on. Physically,
the fact that after each interaction the copy disappears is the Markov approximation.

Let us now describe the mathematical setup for the non-Markovian quantum repeated
interactions. The main idea is to keep the memory of each interaction.

As the chain is supposed to be infinite, the state space of the chain is described as

T � =
∞⊗

j=1

Hj ,

where Hj � H for all k. To formulate the precise definition of this infinite tensor product we
fix an orthonormal basis {X0, . . . , XK} of H (where K + 1 is the dimension of H). The state
|X0〉〈X0| can be regarded as the ground state. The basis of T � is constructed with respect to
the stabilizing sequence induced by X0.

To this end, let P be the set of subsets of the form A = {(n1, i1), . . . , (nk, ik)}, where
k ∈ N�, {i1, . . . , ik} ∈ {1, . . . , K + 1}k , and n1 < · · · < nk with nj ∈ N�. The basis of T � is
denoted by B = {XA,A ∈ P}, where for A ∈ P the vector XA corresponds to
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XA = X0 ⊗ · · · X0 ⊗ Xi1 ⊗ X0 ⊗ · · · X0 ⊗ Xi2 ⊗ · · ·
and the vector Xij appears in the copy number nj of H.

Let us now define the basic operator. On B(H), the canonical operator with respect to
{X0, . . . , Xk} is denoted by aij , that is, for all (i, j, k) ∈ {0,K}3 we have

aij (Xk) = δjkXi,

that is

aij = |Xi〉〈Xj |,
in Dirac notations. By extension, we denote by a

(k)
ij the operator acting as aij on Hk , which is

the copy number k of H. On T �, we have

a
(k)
ij = I ⊗

k−1⊗
j=1

I ⊗ ak
ij ⊗

⊗
j>k

I.

The index k without round bracket means that the operator aij is set on the place number k is
the infinite tensor product.

Hence, the coupled system, system and chain, is described by the Hilbert space

� = H0 ⊗ T �. (1)

We endow this Hilbert space with the following state:

μ = ρ ⊗
∞⊗

j=1

βj , (2)

where ρ is a reference state of H0 and βj = β for all j , with β = |X0〉〈X0| = a00 is the
reference state of H (this corresponds to a system at zero temperature).

Let us now describe the interaction setup. The first copy of H interacts with H0 during
a time τ . After this interaction a second copy of H interacts with H0 and the first copy, that
is H2 interacts with H0 ⊗ H1 and so on. As a consequence, the kth copy of H interacts with
H0 ⊗ ⊗k−1

j=1 Hj , that is we keep the memory of the previous interactions.
Mathematically, we consider a sequence of unitary operators (Uk) for k � 1. For each

k the operator Uk acts non-trivially on H0 ⊗ ⊗k
j=1 Hj and acts like the identity operator on⊗

j�k+1 Hj . The sequence of unitary operators (Vk) which describes the repeated quantum
interactions is defined by putting

Vk = Uk · · · U1 (3)

for all k (the operator Vk describes the k first interactions). Hence, in the Schrödinger picture,
after k interactions, the initial state μ defined by (2) becomes

μk = VkμV �
k . (4)

It is straightforward to see that μk+1 = Uk+1μkU
�
k+1. The sequence (μk) describes the evolution

of the system in the quantum repeated interaction setup with memory.
It is important to note that in the Markovian case the unitary operator Uk acts only non-

trivially on the tensor product of H0 with Hk , which is the kth copy of H. On the rest of the
Hilbert space, it acts like the identity operator. In the homogeneous case for example, the
operator Uk can be expressed, for all k, as

Uk =
K∑

i,j=0

Uij ⊗ a
(k)
ij , (5)
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where Uij are operators on H0. In the following, to ease the notation, we suppress the symbol
⊗ in similar expression.

In order to generalize the above class of Markovian models, which have been studied
extensively in [3], we apply the classical projection operator technique of Nakajima–Zwanzig
and its time-convolutionless version to the non-Markovian quantum repeated interactions
model (see chapter 9 in [14] for a general introduction for Nakajima–Zwanzig and time-
convolutionless operator technique).

3. Discrete non-Markov evolution equation

This section is devoted to the description of the discrete evolution of the small system in the
non-Markovian case. In section 3.1, we apply the Nakajima–Zwanzig operator technique and
in section 3.2, we investigate the equivalent time-convolutionless projection operator technique
for the discrete case.

3.1. The Nakajima–Zwanzig projection operator technique

We start by applying the Nakajima–Zwanzig projection operator technique to the sequence
(μk) introduced in (4). For any state α on �, we define the Nakajima–Zwanzig operators:

Pα = TrT �[α] ⊗
∞⊗

j=1

βj

Qα = α − Pα, (6)

where TrT �[α] represents the partial trace of α with respect to the chain. In the canonical
approach, the operator P projects onto the relevant part of the small system. The aim is to
obtain an evolution equation which describes the sequence (Pμk) representing the evolution
of the relevant part of H0.

For all operators α on B(�), let us denote

Lk(α) = UkαU�
k . (7)

This way, for a fixed k, the projection operators Pμk+1 and Qμk+1 are given by

Pμk+1 = PUk+1μkU
�
k+1 = PUk+1(P + Q)μkU

�
k+1

= PLk+1(Pμk) + PLk+1(Qμk), (8)

Qμk+1 = QLk+1(Pμk) + QLk+1(Qμk). (9)

Iterating (9) and taking into account the non-commutativity of the operator Lk , we obtain the
following expression for Qμk+1:

Qμk+1 =
k∑

i=0

⎛
⎝QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠ (P(μi))

⎞
⎠
⎞
⎠ + QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=1

QLj

⎞
⎠ (Q(μ0))

⎞
⎠.

(10)

As usual, the operator T← describes the chronological time ordering (the discrete time
arguments j increase from right to left). This expression corresponds to a discrete version
of the time ordering exponential term appearing in the non-Markovian continuous case (see
[14]). Obviously, the first term Q(μ0) = 0. Hence, by replacing expression (10) in expression
(8), we get
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Pμk+1 = PLk+1(Pμk) + PLk+1

⎛
⎝k−1∑

i=0

QLk

⎛
⎝T←

⎛
⎝k−1∏

j=i

QLj

⎞
⎠ (Pμi)

⎞
⎠

⎞
⎠

= PLk+1(Pμk) +
k−1∑
i=0

PLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠ (Pμi)

⎞
⎠ . (11)

The above expression describes the complete time evolution of the relevant part of H0.
Similarly in the continuous case, it appears as a discrete integro-differential equation which
involves all the history of the evolution.

It might be interesting to see how the Markovian description emerges from the more
general approach described above. As in the continuous case, we obtain a discrete version of
the Lindblad, Gorini, Kossakowski, Sudarshan evolution equation as is shown in the following
proposition.

Proposition 1. Let (Uk) be a sequence of unitary operators which describe a Markovian
evolution. For all k, for all i < k and for all states γ on �, we have

PLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠ (Pγ )

⎞
⎠ = 0. (12)

Hence expression (11) becomes

Pμk+1 = PLk+1(Pμk).

Furthermore, in the Markovian homogeneous case (5) there exists a completely positive map
L acting on B(H0), such that for all k

Pμk+1 = L(Pμk). (13)

Proof. Let us start by showing the last part of the proposition. Recall that the operator (Uk),
in the homogeneous Markovian case (5), can be expressed as

Uk =
K∑

ij=0

Uija
(k)
ij .

Since, for all k, the operator Vk , defined in equation (3) acts only on the k first copies of H, it
is worth noticing that for all k

μk = Tr⊗
j>k Hj

[μk] ⊗
∞⊗

j=k+1

a
j

00.

Hence for all k and all X ∈ B(H0)

Tr[TrT �[μk+1]X] (14)

= Tr

⎡
⎣μk+1X ⊗

∞⊗
j=1

I

⎤
⎦ = Tr

⎡
⎣μkU

�
k+1

⎛
⎝X ⊗

∞⊗
j=1

I

⎞
⎠ Uk+1

⎤
⎦

= Tr

⎡
⎣μk

∑
i,j,p

U�
ijXUpja

(k+1)
ip

⎤
⎦

6
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= Tr

⎡
⎣Tr⊗

j>k Hj
[μk] ⊗

∞⊗
j=k+1

a
j

00

⎛
⎝∑

i,j,p

U�
ijXUpja

(k+1)
ip

⎞
⎠

⎤
⎦

= Tr

⎡
⎣Tr⊗

m>k Hm
[μk] ⊗

⊗
m>k+1

am
00

⎛
⎝∑

j,p

U�
0jXUpj ⊗

k⊗
j=1

I ⊗ ak+1
0p ⊗

⊗
j>k+1

a
j

00

⎞
⎠

⎤
⎦

=
∑
j,p

⎛
⎝Tr

⎡
⎣Tr⊗

m>k Hm
[μk]

⎛
⎝U�

0jXUpj ⊗
k⊗

j=1

I

⎞
⎠

⎤
⎦ Tr

⎡
⎣ak+1

0p ⊗
⊗

j>k+1

a
j

00

⎤
⎦

⎞
⎠

=
∑

j

⎛
⎝Tr

⎡
⎣Tr⊗

m>k Hm
[μk]

⎛
⎝U�

0jXU0j ⊗
k⊗

j=1

I

⎞
⎠

⎤
⎦

⎞
⎠

= Tr

⎡
⎣TrT �[μk]

⎛
⎝∑

j

U�
0jXU0j

⎞
⎠

⎤
⎦

= Tr

⎡
⎣

⎛
⎝∑

j

U0j (TrT �[μk])U�
0j

⎞
⎠ X

⎤
⎦ (15)

= Tr[L(TrT �[μk])X]. (16)

This proves that Pμk+1 = L(Pμk). It is interesting to note that we have obtained the Kraus
decomposition (15) of the completely positive map L (16) (see [2, 14] for more details).
This result was obtained in a different way in [3]. The equivalent proposition for the non-
homogeneous case can simply be obtained by replacing the terms Uij by the non-homogeneous
terms U

(k+1)
ij .

Now we turn our attention to the first part of the proposition. Equation (12) follows from
the fact that for all operators α of the form

α = η ⊗
∞⊗

j=k+1

a
j

00, (17)

with η being any operator on B
(
H0 ⊗ ⊗k

j=1 Hj

)
, we have

PUk+1QαU�
k+1 = 0. (18)

Indeed, with the definition of the operation P and the unitary operators (Uk), it is
straightforward to see that the operator T←

( ∏k
j=i QLj

)
(Pγ ) is of the same form as an

operator α (17).
Now, we are in the position to prove the result (18). The operator α can be expressed as

α =
∑

(i1,j1),...,(ik ,jk)∈{0,...,K}
α(i1,j1),...,(ik ,jk) ⊗ a1

i1,j1
⊗ · · · ⊗ ak

ik,jk
⊗

⊗
j>k

a
j

00.

Then, with our notation and with the rule of the partial trace, one can see that

Pα =
∑

i1,...,ik

α(i1,i1),...,(ik ,ik) ⊗
∞⊗

j=1

a
j

00.

Accordingly, for Qα, we obtain

Qα =
∑

(i1,j1),...,(ik ,jk)∈{0,...,K}
β(i1,j1),...,(ik ,jk) ⊗ a1

i1,j1
⊗ · · · ⊗ ak

ik,jk
⊗

⊗
j>k

a
j

00, (19)

7
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with

β(0,0),...,(0,0) = −
∑

(i1,...,ik)	=(0,...,0)

α(i1,i1),...,(ik ,ik),

β(i1,j1),...,(ik ,jk) = α(i1,j1),...,(ik ,jk), for all (i1, j1), . . . (ik, jk) 	= (0, 0), . . . , (0, 0).

By applying Lk+1 on Qα (19), we get

Uk+1QαU�
k+1

=
∑
ij

∑
(i1,j1),...,(ik ,jk)∈{0,...,K}

Ui0β(i1,j1),...,(ik ,jk)U
�
j0 ⊗ a1

i1,j1
⊗ . . . ⊗ ak

ik,jk
⊗ aij ⊗

⊗
j>k+1

a
j

00.

The result (18) is proved by noting that

PUk+1QαU�
k+1 =

∑
i

∑
i1,...,ik∈{0,...,K}

Ui0β(i1,i1),...,(ik ,ik)U
�
i0 ⊗

∞⊗
j=1

a
j

00

=
∑

i

Ui0β(0,0)...(0,0)U
�
i0 ⊗

∞⊗
j=1

a
j

00

+
∑

i

Ui0

∑
i1,...,ik 	=0,...,0

α(i1,i1),...,(ik ,ik)U
�
i0 ⊗

∞⊗
j=1

a
j

00

= 0.

This completes the proof of the proposition. �

3.2. The time-convolutioness projection operator method

In this section, we apply the time-convolutionless version of the Nakajima–Zwanzig operator
technique to the framework of non-Markovian quantum repeated interactions. The aim is to
derive a discrete time-evolution equation for (Pμk) which links Pμk+1 only to Pμk .

To this end, for all p, we define the inverse of the operator Lp as

L(−1)
p (α) = (

U−1
p

)
α
(
U−1

p

)�
,

for all operators α. It is straightforward to see that for all p we have μp = L(−1)
p+1 (μp+1). Hence,

expression (10) obtained in the previous section becomes

Qμk+1 =
k∑

i=0

QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠PT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (μk+1)

⎞
⎠

=
k∑

i=0

QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠PT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (

P + Q
)
(μk+1)

⎞
⎠

=
k∑

i=0

QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠PT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (Pμk+1)

⎞
⎠

+
k∑

i=0

QLk+1

⎛
⎝T←

⎛
⎝ k∏

j=i

QLj

⎞
⎠PT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (Qμk+1)

⎞
⎠

=
k∑

i=0

T←

⎛
⎝ k+1∏

j=i−1

QLj

⎞
⎠QLiPT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (Pμk+1)

8
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+
k∑

i=0

T←

⎛
⎝ i−1∏

j=k+1

QLj

⎞
⎠QLiPT→

⎛
⎝ k+1∏

p=i+1

L(−1)
p

⎞
⎠ (Qμk+1), (20)

where T→ corresponds to the time antichronological ordering. For a fixed m, we define for all
operators α ∈ B(�) the following super-operator:

Km+1(α) =
m∑

i=0

T←

⎛
⎝ i−1∏

j=m+1

QLj

⎞
⎠QLiPT→

⎛
⎝ m+1∏

p=i+1

L(−1)
p

⎞
⎠ (

α
)
.

Expression (20) becomes

[I − Kk+1]Qμk+1 = Kk+1Pμk+1. (21)

Hence, if we assume that [I − Kk+1] is invertible, we get

Q(μk+1) = [I − Kk+1](−1)Kk+1Pμk+1. (22)

As a consequence, for the expression of Pμk+1 can now be written as

Pμk+1 = PLk+1Pμk + PLk+1
[
[I − Kk](−1)KkPμk

]
. (23)

The expression (23) is the discrete time-convolutionless equation of evolution for the reduced
system. The invertibility of I − Kk implies the discrete equivalent of the locality in the time
continuous case (see chapter 9 in [14] for more details).

4. Non Markov quantum repeated interactions with quantum measurement

In the Markovian case, the theory of quantum measurement and the corresponding evolution
are well understood and well studied. This is not the case in a non-Markovian set up. One of
the open questions concerns the description of the evolution of the reduced system undergoing
indirect quantum measurement. The way to describe the random non-Markovian evolution of
the reduced system in the continuous time case is far from obvious and in general it is based
on very technical aspect [20, 23].

In this section, we present a very clear mathematical and physical way to describe
indirect quantum measurement in the discrete non-Markovian setup. The approach consists
of adapting the quantum repeated measurement [8, 34–36] in the non-Markovian quantum
repeated interactions model. In the same spirit of these papers, we will show how to derive a
discrete non-Markovian stochastic master equation. Let us stress that in [34–36] the Markovian
stochastic master equations are obtained as a time continuous limit of such discrete models.

We proceed in the following way. After each interaction, implying a new copy of H, a
quantum measurement is performed on the last copy which has interacted (this corresponds to
the natural indirect measurement scheme introduced in [8, 34–36]). Each measurement
involves a random evolution of the state of the system �. The repeated sequence of
measurement gives rise to a random sequence of states on �. Then, we apply the Nakajima–
Zwanzig operator technique on this sequence in order to obtain the evolution of the relevant
part of the reduced system H0. In fact, this strategy is very natural and does not require any
phenomenological inputs.

After this, we will consider the problem of unravelling. Obtaining unravelling in the
non-Markovian case imposes strong assumptions on the interaction setup. Focusing on a
special case, we show that essentially unravelling implies the Markov assumption except for
very special situations.

9
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4.1. Quantum repeated measurements

We start by describing the setup of quantum repeated measurements on the whole system.
After each interaction, a measurement of an observable is performed on the last copy of H
which has interacted.

We need to introduce some notations. Let A = ∑p

i=0 λiPi be the spectral decomposition
of an observable of H. In analogy to the construction of the basic operators a

(k)
ij in section 2,

we introduce

A(k) = I ⊗
k−1⊗
j=1

I ⊗ A ⊗
⊗

j>k+1

I.

The operator A(k), which is an observable of Hk , is the extension of the observable A to the
whole space � (1). In the same way, for all i ∈ {0, . . . , p} we denote the eigen-projectors as

P
(k)
i = I ⊗

k−1⊗
j=1

I ⊗ Pi ⊗
⊗

j>k+1

I.

Let us describe a single interaction and a single measurement. After the first interaction the
state of the system is described by μ1 = U1μU�

1 , where μ is the initial state (2). According
to the postulates of quantum measurement only the eigenvalues of A(1) can be observed; the
result is random and obeys to the probability law

P [to observeλi] = Tr
[
μ1P

(1)
i

]
.

Furthermore, if we have observed the eigenvalue λi , the state of the system becomes

ρ1(i) = P
(1)
i μ1P

(1)
i

Tr
[
μ1P

(1)
i

] .

This is the so-called von Neumann reduction postulate (more general measurement procedures
are described by instruments [6, 7]). The new state ρ1 is actually a random variable. It describes
the result of one interaction and one measurement.

Let us make precise the probabilistic framework of the complete procedure of quantum
repeated measurements. To this end, we introduce the probabilistic space


 = {0, 1, . . . , p}N�

,

where the index i corresponds to the eigenvalue λi . We endow this space with the cylinder
algebra C generated by the set

�i1,...,ik = {ω ∈ 
|ω1 = i1, . . . , ωk = ik} .

Now, we define a probability law on the cylinder set. To this end, we introduce for all
(i1, . . . , ik) ∈ {0, . . . , p}k:

μ̃k(i1, . . . , ik) = T←

⎛
⎝ k∏

j=1

P
(j)

ij
Uj

⎞
⎠ (

μ
)
T→

⎛
⎝ k∏

j=1

U�
j

⎞
⎠ P

(j)

ij
. (24)

To simplify the above expression, we introduce the notation

P
(j)

ij
[α] = P

(j)

ij
αP

(j)

ij
.

Hence, by using the definition of the operations Lk , we get

μ̃k(i1, . . . , ik) = T←

⎛
⎝ k∏

j=1

P
(j)

ij
Lj

⎞
⎠ (μ). (25)

10
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This corresponds to the non-normalized state, if we have observed the eigenvalues λi1, . . . , λik .
The probability law on the cylinder set is now defined as

P [�i1,...,ik ] = Tr[μ̃k(i1, . . . , ik)].

It is easy to check that the above definition satisfies the Kolmogorov consistency criterion. As
a consequence, it defines a unique probability law P on (
, C). Now for all k and all ω ∈ 


we can define the following random variable:

ρk(ω) = μ̃k(ω1, . . . , ωk)

Tr[μ̃k(ω1, . . . , ωk)]
.

The quantum repeated interactions combined with quantum repeated measurements are then
described by the random sequence (ρk). Such a sequence is called a discrete quantum
trajectory (on the whole space). To complete the description of discrete quantum trajectories
on the whole space, we have the following Markov property.

Proposition 2. The random sequence (ρk) is a Markov chain on (�, C, P ) valued in the set
of states on �.

More precisely, let θ be a state on �, if ρk = θ the random variable ρk+1 takes the values

ρk+1 = P
(k+1)

i Lk+1(θ)

Tr
[
P

(k+1)

i Lk+1(θ)
] , i = 0, . . . , p,

with probability pk+1
i = Tr

[
P

(k+1)

i Lk+1(θ)
]
.

In the following section, we apply the Nakajima–Zwanzig projection operator technique
to the random sequence (ρk). As in the case without measurement (see section 3.1), this
allows for the description of the evolution of the relevant part of the system. The projection
on the reduced system gives rise to a random sequence of states of H0, which is, in general,
non-Markovian.

4.2. Non-Markovian stochastic discrete evolution equation

This section is devoted to the description of the discrete stochastic evolution equation of
the reduced system obtained by the Nakajima–Zwanzig projection operator technique. The
equation we obtain is a discrete version of the non-Markovian stochastic master equations (see
[20, 23] for continuous version).

Let (ρk) be a quantum trajectory as described in proposition 3. For all k and for all

i ∈ {0, . . . , p} we denote the transition probabilities by pk+1
i = Tr

[
P

(k+1)

i Lk+1(ρk)
]
. Hence,

with proposition 2, we can describe the evolution of (ρk) by the following equation:

ρk+1(ω) =
p∑

i=0

(
P

k+1
i Lk+1

)
(ρk(ω))

pk+1
i

1k+1
i (ω), (26)

for all ω ∈ �. In (26), the indicator function 1k+1
i corresponds to the observation of the

eigenvalue λi during the (k +1) th measurement. More precisely, we have 1k+1
i (ω) = 1i (ωk+1),

for all ω ∈ � (in the following, we suppress the argument ω to enlighten the notations). Let
us stress that we suppose implicitly that the quotient 1k+1

i

/
pk+1

i is equal to zero if pk+1
i = 0;

this is consistent with respect to the probability P on �. By applying the Nakajima–Zwanzig
operator P and Q introduced in section 3.1 to (26), the relation I = P + Q gives us

11
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Pρk+1 = P
(

p∑
i=0

(
P

k+1
i Lk+1

)
(ρk)

pk+1
i

1k+1
i

)

=
p∑

i=0

1

pk+1
i

P
(
P

k+1
i Lk+1

)
(Pρk)1

k+1
i +

p∑
i=0

1

pk+1
i

P
(
P

k+1
i Lk+1

)
(Qρk)1

k+1
i ,

Qρk+1 = Q
(

p∑
i=0

(
P

k+1
i Lk+1

)
(ρk)

pk+1
i

1k+1
i

)

=
p∑

i=0

1

pk+1
i

Q
(
P

k+1
i Lk+1

)
(Pρk)1

k+1
i +

p∑
i=0

1

pk+1
i

Q
(
P

k+1
i Lk+1

)
(Qρk)1

k+1
i . (27)

By iteration, as is done in the case without measurement, we get the following expression for
Qρk+1:

Qρk+1 =
k+1∑
j=1

∑
(ik+1,...,ij )∈{0,...,p}

T←

⎛
⎝k+1∏

l=j

Q
(
P

l

il
Ll

)⎞⎠ (Pρj−1)

j∏
l=k+1

1l
il

pl
il

+
∑

(ik+1,...,i1)∈{0,...,p}
T←

(
k+1∏
l=1

Q
(
P

l

il
Ll

))
(Qρ0)

1∏
l=k+1

1l
il

pl
il

=
k+1∑
j=1

∑
(ik+1,...,ij )∈{0,...,p}

T←

⎛
⎝k+1∏

l=j

Q
(
P

l

il
Ll

)⎞⎠ (Pρj−1)

j∏
l=k+1

1l
il

pl
il

. (28)

The last equality in (28) comes from the fact that Q(ρ0) = Q(μ0) = 0. Hence, we get the
following equation:

Pρk+1 =
p∑

i=0

1

pk+1
i

P
(
P

k+1
i Lk+1

)
(Pρk)1

k+1
i +

k∑
j=1

∑
(ik+1,ik ,...,i1)∈{0,...,p}

P
(
P

k+1
ik+1

Lk+1
)

×
⎛
⎝T←

⎛
⎝ k∏

l=j

Q
(
P

l

il
Ll

)
(Pρj−1)

⎞
⎠

⎞
⎠ j∏

l=k

1l
il

pl
il

. (29)

This expression is valid for k � 1. For k = 0, the expression is given by equation (27). In
order to express the above equation only with terms Pμi , it is worth noting that for all k and
for all i

pk+1
i = Tr

[
P

(k+1)

i Lk+1(ρk)
]

= Tr
[
P

(
P

(k+1)

i Lk+1(ρk)
)]

= Tr
[
P

(
P

(k+1)

i Lk+1(Pρk)
)]

+ Tr
[
P

(
P

(k+1)

i Lk+1(Qρk)
)]

.

By replacing the expression of Qρk with (28), we get an expression involving only terms Pμi .
Expression (29) describes then the random evolution of the relevant part of the system. It

is typically a non-Markovian chain evolution, because the expression at time k involves all the
past of the sequence. Equation (29) is the discrete version of the non-Markovian stochastic
master equation. The sequence (Pμk) is called the reduced quantum trajectory.

In the Markovian case (see [36] for a complete study), by applying a result similar to
propositions 1 and 2, the evolution equation (29) is reduced to

12
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Pρk+1 =
p∑

i=0

1

pk+1
i

P
(
P

k+1
i Lk+1

)
(Pρk)1

k+1
i

and describes a Markov chain.
As we can note, equations (11), (23), (28) are very technical. In general (as in the

continuous case), they are difficult to manipulate. Apart from the choice of measurement, our
description is general. In the last subsection, we investigate the problems of unravelling and
the question of the pure state evolution in a particular non-Markovian case.

4.3. Non pure state quantum trajectory

The success of the indirect quantum measurement theory and the quantum trajectory
theory in the Markovian case lies in the fact that the indirect measurement gives rise to a
pure state evolution for the reduced system. This means that if initially the state of H0 is pure,
the reduced quantum trajectory evolves on the set of pure states of H0 [6, 14]. As is made
precise in section 1, such a property is widely used in Monte Carlo wavefunction methods for
the simulation of the quantum Markov master equation.

In this section, we start by recalling the pure state property for the discrete quantum
trajectory in the Markovian case. Next, for a specific model, we investigate the conditions
under which a pure state trajectory can be unravelled in the non-Markovian case.

4.3.1. Markovian unravelling. In this subsection, we show that the measurement of an
observable which has different eigenvalues (with eigen-space of dimension 1) provides the
unravelling result in the Markovian case.

Proposition 3. Let (Uk) be a sequence of unitary operators describing a quantum repeated
interaction setup in the Markovian case. Let A be an observable whose spectral decomposition
is given by

A =
K∑

i=0

λiPi,

where K + 1 is the dimension of H. Let ρ0 = |ψ0〉〈ψ0| be the initial state of H0. Let (Pρk)

be the reduced quantum trajectory describing the evolution of the state of H0 in the setup of
quantum repeated measurements of A.

Then, there exists a random sequence of vectors (ψk) of H0 such that

Pρk = |ψk〉〈ψk| ⊗
∞⊗

j=1

|X0〉〈X0|. (30)

Proof. By recursion, suppose that there exists ψk such that Pρk = |ψk〉〈ψk|⊗
⊗∞

j=1 |X0〉〈X0|.
As the evolution of P(ρk) in the Markovian case is given by

Pρk+1 =
K∑

m=0

1

pk+1
m

P
(
P

k+1
m Lk+1

)
(Pρk)1

k+1
m ,

it is sufficient to show that each P
k+1
m Lk+1(Pρk)

/
pk+1

m can be expressed as (30). To this end,

we make explicit expression of P
k+1
m Lk+1(Pρk) for all m ∈ {0, . . . , K}. Let us consider a

13
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homogeneous Markovian evolution (the non-homogeneous case can be easily adapted). With
the same notation as in the proof of proposition 2, we get the following for Lk+1

(
Pρk) :

Lk+1(Pρk) =
∑
ij

Ui0|ψk〉〈ψk|U�
j0 ⊗

k⊗
l=1

al
00 ⊗ ak+1

ij ⊗
∞⊗

l=k+2

al
00.

As the observable A has eigenvalues of rank 1, for all m ∈ {0, . . . , K} the projector Pm is a
rank-1 projector. Hence, there exists a unitary operator Qm such that Pm = |QmX0〉〈QmX0|.
This allows us to write

P
k+1
m Lk+1(Pρk) =

∑
ij

Ui0|ψk〉〈ψk|U�
j0 ⊗

k⊗
l=1

al
00

⊗ 〈QmX0, Xi〉〈Xj,QmX0〉|QmX0〉〈QmX0| ⊗
∞⊗

l=k+2

al
00

=
∣∣∣∣∑

i

〈QmX0, Xi〉Ui0ψk

〉〈 ∑
j

〈QmX0, Xj 〉Uj0ψk

∣∣∣∣
⊗

k⊗
l=1

al
00 ⊗ |QmX0〉〈QmX0| ⊗

∞⊗
l=k+2

al
00.

Hence, we get

TrT �

[
P

k+1
m Lk+1(Pρk)

] =
∣∣∣∣ ∑

i

〈QmX0, Xi〉Ui0ψk

〉〈 ∑
j

〈QmX0, Xj 〉Uj0ψk

∣∣∣∣ = |θk+1〉〈θk+1|.

The normalization factor pk+1
m gives the right expression of ψk+1 and the recursion holds. �

4.3.2. Non Markovian unravelling. In this section, we investigate the unravelling in the
context of non-Markovian quantum repeated measurements.

Our discussion will be based on a typical physical application, namely a two-level atom
(a qubit) in contact with a chain of spins. Mathematically, for this model H0 = H = C2. Let
us make precise the description of the interaction. Let k be fixed, the interaction number k is
defined by a total Hamiltonian Htot(k) of the following form:

Htot(k) = H0 + HR(k) + λHI (k), (31)

where

• The operator H0 corresponds to the free Hamiltonian of H0. It is a self-adjoint operator
acting non-trivially on H0 and acting like the identity operator on the chain.

• The operator HR(k) is the free Hamiltonian corresponding to the free evolution of the k
first copies ofH. It acts non-trivially on

⊗k
j=1 Hj and like the identity operator elsewhere.

If H corresponds to the free evolution of one copy of H, we have

HR(k) =
k∑

i=1

⎛
⎝I ⊗

i−1⊗
j=1

I ⊗ H ⊗
⊗
j>i+1

I

⎞
⎠ =

k∑
i=1

H(k). (32)

In our context, the natural Hamiltonian of a single copy is H = γ a00, where γ is a real
constant.

14
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• The self-adjoint operator HI(k) is the interaction Hamiltonian. It acts non-trivially on
H0 ⊗ ⊗k

j=1 Hj and like the identity operator elsewhere. The interaction Hamiltonian
HI(k) is given by

HI(k) =
k∑

i=1

(
Ci(k)a

(i)
10 + C�

i (k)a
(i)
01

)
, (33)

where Ci are operators on H0. In other words, each copy interacts with H0, but they do
not interact with each other. This is a simple physical case describing a non-Markovian
memory effect (at each new interaction, the previous copies continue to interact).

• The term λ is a real scalar corresponding to a coupling constant.

If the time of each interaction is τ , then the unitary operator Uk is defined as

Uk = eiτHtot (k).

Hence, it describes a non-Markovian quantum repeated interactions model. The non-
Markovian character comes from the definition of HI(k).

Remark 1. It is worth noting that if HI(k) acts non-trivially on the tensor product of H0 with
Hk and like the identity operator elsewhere, we recover a Markovian approach of quantum
repeated interactions. Actually, it does not correspond directly to the previous definition of
Markovian interaction but it is equivalent to it. Indeed, at the kth interaction the fact that HI(k)

acts non-trivially on the tensor product of H0 with Hk and like the identity operator elsewhere,
means that only Ck(k) is a non-zero operator. Hence, the (k − 1) first copies do not interact
with H0, while we can keep the definition of their free evolution. In the first definition of the
Markovian case, we do not refer to the free evolution of the (k − 1) first copies which could
mean that we keep a kind of memory, but by taking the partial trace this memory disappears.

The result, we shall prove is the following.

Proposition 4. Let us consider a non-Markovian model of quantum repeated interactions
defined by the interaction (31)–(33). Let A be an observable of H.

The unravelling property, in terms of indirect measurements of A, implies necessarily that
A is of the form

A = λ0

(
1/2 1/2
1/2 1/2

)
+ λ1

(
1/2 −1/2

−1/2 1/2

)
(34)

and

C1(2) = C1(2)�. (35)

Reciprocally, let us consider the special case of an observable A of the form (34) and the
special case of interaction (31)–(33) defined by

(i) γ = 0, that is, no free evolution;
(ii) Ci(k) = Ci(k)�, for all integers i and k;

(iii) for all k � 2, Ci(k) = 0, for 1 � i � k − 2, that is, at the kth interaction only the copies
number k and k − 1 of H interact with H0.

Before giving the proof, we give the interpretation of this result. As we have seen
in proposition 3, under the Markovian assumption, the unravelling property holds for all
observable with one rank eigenprojectors. As it is made precise in proposition 4, in the case
of interaction (31)–(33), for all observables, which are not of the form (34), we do not get
unravelling in terms of indirect measurements. Moreover, even if the observable is of the form
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(34), the unravelling imposes a special form for the operators involved in the definition of the
interaction (31)–(33). Finally, these necessary conditions allow us to express further sufficient
conditions in order to obtain a situation in which we find the unravelling property.

The crucial fact, which prevents the unravelling in the non-Markovian case, is the fact that
at the kth step the measurement involves only the copy number k of H whereas the evolution
involves all the previous copies. The interaction with the other copies of H, which are not
measured, produces entanglement and prevents the description of the evolution of the small
system in terms of pure states.

Proof. Our strategy to study the unravelling question in this context is the following one.
We start by considering the two first interactions, that is H0 coupled with H1 and next with
H1 ⊗ H2. With a general approach, we show that the condition of unravelling imposes
assumptions on the definition of the interaction. Next, we translate these assumptions in terms
of the interaction model (31). Finally, by considering the small interaction time τ , we show that
unravelling imposes to ‘forget’ the interaction with H1 during the second interaction, except
for a very special case related with conditions (34) and (35). Let us stress that forgetting the
interaction with H1 during the second interaction corresponds to the Markovian assumption.
Next, we investigate the special case of the proposition.

The space describing the two first interactions is H0 ⊗ H1 ⊗ H2. Let

U1 =
∑

i,j=0,1

Ui,j a
1
ij ⊗ I

be a unitary operator describing the first interaction and let

U2 =
∑

i,j=0,1

∑
k,l=0,1

Ui,j,k,la
1
ij ⊗ a2

kl

be a unitary describing the second interaction. Let A = λ0P0 + λ1P1 be the measured
observable and let ρ = |ψ〉〈ψ | be the initial state of H0.

Concerning the observable A, there exist unitary matrices Qm,m = 0, 1 such that Pm =
|QmX0〉〈QmX0|. According to the unravelling result in the Markovian case, the first random
state ρ1 on H0 ⊗ H1 ⊗ H2 can take one of the values

1

Z1(m)
|ψ1(m)〉〈ψ1(m)| ⊗ |QmX0〉〈QmX0| ⊗ |X0〉〈X0|, m = 0, 1,

where ψ1(m) = ∣∣∑
i〈QmX0, Xi〉Ui0ψ

〉
and Z1 corresponds to the normalization factor. Hence

the state Pρ1 is a pure state. For the second interaction and the second measurement, we
introduce the following notation:

Lu0 =
⎛
⎝ ∑

i,j=0,1

Uiju0a
1
ij

⎞
⎠ ⊗ a2

u0, u = 0, 1.

In the same way, the second state ρ2 can take one of the values

ρ2(m, n) = 1

Z2(m, n)

(∑
u,v

〈QnX0, Xu〉〈Xv,QnX0〉Lu0 (ψ1(m) ⊗ |QmX0〉〈QmX0|)L�
v0

)

⊗ |QnX0〉〈QnX0|,
with (m, n) ∈ {0, 1}2. The accurate computation of Pρ2(m, n) gives

Pρ2(m, n) = 1

Z2(m, n)
(|H0(m, n)ψ1(m)〉〈H0(m, n)ψ1(m)|

+ |H1(m, n)ψ1(m)〉〈H1(m, n)ψ1(m)|) ⊗ a1
00 ⊗ a2

00,
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where

Hi (m, n) =
∑
u,v

〈QnX0, Xu〉〈Xv,QmX0〉Ui,u,v,0, i = 0, 1.

As a consequence, unravelling is possible if the following condition is satisfied:

|H0(m, n)ψ1(m)〉〈H0(m, n)ψ1(m)| + |H1(m, n)ψ1(m)〉〈H1(m, n)ψ1(m)|
= |ψ2(m, n)〉〈ψ2(m, n)|,

for some vector ψ2(m, n). If we want a rank-1 projector to be expressed as the sum of two
rank-1 projectors, this imposes that there exist constants μ and ν such that

νH0(m, n)ψ1 + μH1(m, n)ψ1 = 0.

In general, μ and ν will depend on n,m and also on ψ1. Here, we assume that there exist
non-zero constants μ(m, n) and ν(m, n) such that

ν(m, n)H0(m, n) + μ(m, n)H1(m, n) = 0. (36)

This assumption will be justified after the proof.
Now, our aim is to show how the condition (36) is connected to the possibility of obtaining

unravelling in the case of the interaction (31). The condition (36) imposes a relation between
the coefficients Ui,j,k,l of the unitary operator U2. Let us express these coefficients in the
interaction model (31). The total Hamiltonian for two interactions is defined by

Htot = H0 ⊗ I ⊗ I + I ⊗ γ a00 ⊗ I + I ⊗ I ⊗ γ a00 + λ(C1(2) ⊗ a10 ⊗ I + C�
1(2) ⊗ a01 ⊗ I

+ C2(2) ⊗ I ⊗ a10 + C�
2(2) ⊗ I ⊗ a01).

In order to describe the coefficients of U2 in terms of Htot, we introduce an appropriate basis
of H0 ⊗H1 ⊗H2, which is X0 ⊗X0 ⊗X0, X1 ⊗X0 ⊗X0, X0 ⊗X1 ⊗X0, X1 ⊗X1 ⊗X0, X0 ⊗
X0 ⊗ X1, X1 ⊗ X0 ⊗ X1, X0 ⊗ X1 ⊗ X1, X1 ⊗ X1 ⊗ X1. Hence, we can write

Htot =

⎛
⎜⎜⎝

H0 + 2γ I λC1(2) λC2(2) 0
λC�

1(2) H0 + γ I 0 λC2(2)

λC�
2(2) 0 H0 + γ I λC1(2)

0 λC�
2(2) λC�

1(2) H0

⎞
⎟⎟⎠, U2 =

⎛
⎜⎜⎝

U0,0,0,0 U0,1,0,0 ∗ ∗
U1,0,0,0 U1,1,0,0 ∗ ∗
U0,0,1,0 U0,1,1,0 ∗ ∗
U1,0,1,0 U1,1,1,0 ∗ ∗

⎞
⎟⎟⎠.

We use the symbol ∗ to complete the coefficients of U2 because these coefficients do not
appear in the final result. Now, by studying the asymptotic expansion of U2 = eiτHtot in term
of τ , one can find operators Li,j,,k,l(τ ) such that

U0,0,0,0 = I + τL000(τ ), U1,1,0,0 = I + τL1100(τ ), (37)

U0,1,0,0 = τC1(2)L0,1,0,0(τ ), U1,0,0,0 = τC�
1(2)L1,0,0,0(τ ), (38)

U0,0,1,0 = τC�
2(2)L1,0,0,0(τ ), U1,1,1,0 = τC2(2)L1,0,0,0(τ ), (39)

U0,1,0,1 = τ 2C1(2)L1,0,0,0(τ ), U1,0,1,0 = τ 2C�
1(2)L1,0,0,0(τ ). (40)

Furthermore, each operator Li,j,k,l(τ ) converges to a non-zero operator when τ goes to zero.
Now, by comparing this asymptotic description in terms of τ and the condition (36), we

investigate the question of unravelling. The result depends on the form of the observable A.
There are two different situations.

The first situation corresponds to the case where P0 = |X0〉〈X0| (this is equivalent to
the case where P1 = |X0〉〈X0|). In this case we have the corresponding Q0 = I , then
〈X0,Q0Xo〉 = 1 and the condition (36) for m = n = 0 gives

ν(0, 0)U0,0,0,0 = μ(0, 0)U1,0,0,0.
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Hence, the asymptotic conditions (37)–(40) impose C1(2) = 0. This situation corresponds to
the Markovian case.

As a consequence, for any observable where P0 = |X0〉〈X0| (or P1), the unravelling
condition imposes the Markovian approach since the memory of the interaction with the first
copy disappears. Indeed, by recursion, for the third interaction and measurement, a similar
reasoning shows that the unravelling condition imposes to forget the memory of the second
copy and so on.

The second situation concerns the case where 0 < 〈X0,QmX0〉 < 1,m = 0, 1. Indeed,
if for m ∈ {0, 1}, we have 〈X0,QmX0〉 ∈ {0, 1}, which corresponds to the first case. Now, the
condition (36) and the asymptotic conditions (37)–(40) give

(ν(m, n)〈QnX0, X0〉〈X0,QmX0〉 − μ(m, n)〈QnX0, X0〉〈X1,QmX0〉)I = τW(τ),

where W(τ) converges to an operator when τ goes to zero. Hence, it imposes that

ν(m, n)

μ(m, n)
= 〈X1,QmX0〉

〈X0,QmX0〉 . (41)

Now, let us deal with the terms in τ 2. If C1(2) 	= C1(2)�, that is if the condition (35) is not
satisfied, we obtain an equality of the following form:

τ 2Z(τ) = τY (τ),

where Z(τ) and Y (τ) converge to non-zero operators, when τ goes to zero. As a consequence,
if C1(2) 	= C1(2)�, we cannot get unravelling.

Let us now suppose that C1(2) = C1(2)�. The condition (36) and the asymptotic
conditions (37)–(40) give

τ 2(ν(m, n)〈QnX0, X1〉〈X1,QmX0〉 − μ(m, n)〈QnX0, X1〉〈X0,QmX0〉)C1(2)N(τ)

= τM(τ),

where N(τ) and M(τ) converge to non-zero operators when τ goes to zero. It imposes the
condition

ν(m, n)

μ(m, n)
= 〈X0,QmX0〉

〈X1,QmX0〉 , or C1(2) = 0. (42)

The case C1(2) = 0 corresponds to the Markovian approach and the result in section 4.3.1
imposes naturally the unravelling result. Otherwise, the condition (41) combined with the
condition (42) implies that

〈X0,QmX0〉2 = 〈X1,QmX0〉2, m = 0, 1.

It is easy to note that this condition corresponds to special observables of the form (34). This
means that in the non-Markovian case with the interaction model (31), the unravelling result
cannot be obtained if the measured observable is not of the form (34) with C1(2) = C1(2)�.

Reciprocally, we can now exhibit a special model of interaction (31) that allows
unravelling. We consider that for all (i, k) ∈ N, we have Ci(k) = Ci(k)� (this corresponds
to the assumption C1(2) = C1(2)�). Furthermore, we assume that there is not free evolution
concerning the infinite chain, that is γ = 0. Moreover, to use directly the previous discussion,
we suppose that at each interaction only two copies of H interact with H0. Mathematically,
for k � 2, at the kth interaction, we consider that only the copies number k and number k − 1
interact with H0. In other words, for k � 2, at the kth interaction, we have Ci(k) = 0 for all
1 � i � k − 2. Now, for an observable of the form (34), by computing eiτHtot , it is easy to see
that

H0(m, n) = H1(m, n), m, n = 0, 1
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and the condition (36) is fulfilled. As only the last incoming copy and the previous one interact
with H0 at each interaction, a recursive reasoning shows that we obtain unravelling in this
case. �

Let us finish by justifying that the condition

νH0(m, n)ψ1 + μH1(m, n)ψ1 = 0,

for constant ν and μ depending on n,m and ψ1 implies that

ν(m, n)H0(m, n) + μ(m, n)H1(m, n) = 0,

without dependence in ψ1. This result stems from the following proposition in linear algebra.

Proposition 5. Let D1 = {ψ ∈ C2/‖ψ‖ = 1} be the unit disk. Let φ be a linear application
such that for all |x〉 ∈ D1 there exist λ such that φ(|x〉) = λ|x〉, then there exists λ such that
for all |x〉, we have φ(|x〉) = λ|x〉, that is φ = λI .

In our case, we aim to apply this result to H0(m, n)−1H1(m, n) for appropriate m and n.
Indeed, it is worth noting that for τ small enough, there always exists (m, n) ∈ {0, 1} such
that the operator H0(m, n) is invertible. Indeed there always exists (m, n) ∈ {0, 1} such that
H(m, n) is of the form αI + τF (τ), where F(τ) converges when τ goes to zero and α is
non-null.

Remark 2. For all non-diagonal observables this property is satisfied for all couples (m, n).
For the diagonal observable, we can consider the case m = n = 0.

To conclude, it remains to prove that random vectors ψ1 cover all the unit disk. This is
justified as follows. The rules of the first interaction and the first measurement give rise to a
random transformation Λ from D1 to D1, which maps ψ0 in a random unit vector ψ1.

For all observable A, it is worth noting that for a τ small enough there exists m ∈ {0, 1}
such that the operator

∑
i〈QmX0, Xi〉Ui0 is invertible (for the non-diagonal observable for all

m this property is satisfied, for the diagonal observable it corresponds to the case m = 0). As
we must consider all the possible results for the measurement, in any case, there exists at least
one possibility that the range of Λ is D1 and the result holds.

5. Summary and conclusion

We have presented a quantum repeated interactions model ‘with memory’ and we have
discussed the general situation of a non-Markovian interaction between a small system and
an infinite chain. We have shown that this approach is tailored to give a clear description of
indirect measurement. Also, the usual projection operation techniques were used to derive the
equations of evolution of the reduced system. Without and with measurement, these equations
reproduce discrete versions of the continuous time evolution equations which are already
considered in the literature.

The question of unravelling of non-Markovian master equations in terms of indirect
measurements has been highly debated in the literature. In order to rigorously address this
interesting problem we have applied our discrete repeated interaction approach to a simple, but
insightful, model. We were able to show, that in general imposing an unravelling condition is
equivalent to imposing the Markov condition, thus making non-Markovian unravellings non-
relevant. Nevertheless, for very special observables and interaction models non-Markovian
indirect measurement unravellings were found to be possible.
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Let us stress that we concentrated on the scheme where, at each interaction, only the
new incoming copy of H is observed. From the physical point of view, when for example
a new photon interacts with the small system, a measurement is performed only on this
new incoming photon. This way, only one measurement apparatus is involved. One can
also consider a procedure, where at each interaction, all the interacting copies are observed
simultaneously. Such a context could be linked with the notion of retarded observable [17]
and one could expect more general results on unravelling in terms of indirect measurement.
This will be discussed in future works.

As a conclusion, our main objective was to demonstrate that the discrete repeated
interaction approach is an interesting framework to address fundamental questions regarding
non-Markovian evolution of quantum systems. In particular, we have shown that pertinent
interpretations of non-Markovian unravellings can be found.
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